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• Multi-degree of freedom structures

• Response to impulse loading

• Response spectrum



 

f(t) Harmonic load

 
Ground acceleration

t

1/ε

τ ε

Unit impulse

f(t)

Why dynamic analysis? Loads change with time



Single degree of freedom (sdof) system

Μass m (kgr, tn), spring parameter k (kN/m), viscous
damper parameter c (kN*sec/m), displacement u(t) (m), 
excitation f(t) (kN).

mass-spring-damper 
systemm

c

k
f(t)

u(t)



Definitions of restoring force parameter k



Setting response parameters as: displacement u(t) (in m), 
velocity u’(t) (in m/s) and acceleration u’’(t) (in m/s2), 
then:
fI(t) = m u’’(t) , fD(t) = c u’(t) , fS(t) = k u(t) .

f(t) = fI(t) + fD(t) + fS(t)
Inertia force fI(t), 
Damping force fD(t)
Restoring (elastic) force fS(t)

f(t)

fI(t)
fD(t)

fS(t)

Dynamic equilibrium – D’Alembert’s principle



Shear plane frame - dynamic parameters

Rigid beam, mass less 
columns. Total weight 
(mass) accumulated in the 
middle of the beam. 
AB – Fixed end
CD – Hinged end

q

h k

A

B C

D
l

u

m = w/g = (ql)/g

k = fst(u=1) = VBA + VΓ∆ = 12EI/h3 + 3EI/h3 =  15EI/h3



Free vibration with no damping
uq

h k

A

B C

D
l

B C

VCDVΒΑ

FI

No external force f(t). Oscillations due to initial conditions 
at t = 0. Initial displacement u0 or/and initial velocity u’0

m u’’(t) + k u(t) = 0

u(t) = R1 sin ωt + R2 cos ωt = R sin(ωt+θ)
where R2 = R1

2 + R2
2 and tan θ = R2/R1

Natural frequency ω = [k/m]1/2 (rad/s),       
Nat. period T = 2π/ω (sec)
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Unrealistic – no decay



Free vibration 
with damping

m

Ι
∞

u(t)

c

A

B Γ

∆

m u’’(t) +  c u’(t) + k u(t) = 0

Characteristic equation (mr2 + cr + k) = 0

and roots: r1,2 = ±
m
k

 -  
)m2(

c
2

2

Equation of motion Homogeneous 2nd order-ODE:
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ion

[c/2m]2 – k/m = 0 
ccr = 2              = 2mω0
ccr = critical damping

m*k

ξ = = 
crc
c

02mω
c

Critical damping ratio

u(t) = e-ξω0t (R1 sin ωdt + R2 cos ωdt) = R e-ξω0t sin(ωdt+θ)

R1 = , R2 = u0, R = , tan θ = 
d

000

ω
ξωu+u 2

2
2
1 R+R

2

1

R
R

For ξ < 1.0, and setting 2ξ-1ωd = ω0



u0

t(s)

u’0

T0 = 2π/ω0

Td = 2π/ωd

Exponential decay R*exp(-ξωοt)
Undamped

Damped
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ξ Range of damping for most 
structures

Logarithmic decrement δ = 2πξ, relates the magnitude of 
successive peaks

ln(Rj/Rj+n) = n ≈ n*2πξ = nδ2ξ-1
πξ2



Oscillation due to ground motion

m

c
k

ug

ut

u
Total displacement (ut), 
ground displacement (ug),
relative displacement (u). 

ut(t) = ug(t) + u(t) 

Dynamic equilibrium:
fI + fD + fS = 0

fI = m ut’’(t) fD = c u’(t) fS = k u(t)

m ut’’(t) + c u’(t) + k u(t) = 0
Equation of motion:



m

c
k

ug

=

fg(t) = - m ag(t)m

c
k

Setting ut’’(t) = ag(t) + u’’(t), where ag(t) = ground 
acceleration, the equation of motion becomes:

m u’’(t) + c u’(t) + k u(t) = - m ag(t) = fg(t) 

The above is the equation of motion of a fixed-base frame 
under an external dynamic force fg(t).



Harmonic excitation

c

m

k

f0 sinϖt

t (s)

f(t)

Force with amplitude  f0  and excitation frequency ω

Equation of motion Non-homogeneous 2nd order-ODE:
m + c + k u(t) =  f0 sin t.)t(u (t)u ω



Two part solution u(t) = uc(t) + up(t) 

Complementary component (transient)

uc(t) = e-ξω0t (C1 sin ωdt + C2 cos ωdt) 

Particular component (steady-state)

Phase θ is determined via the relation: tan θ = 2

2ξβ
1 β−

where β = = frequency ratio
0ω
ω

up(t) = * sin( t-θ) = ρ sin( t-θ) 
k
f0 ω

222 βξ)*(2 + )β-(1
1

ω



The steady-state peak ρ is related to the peak of the static 
response ust (corresponding to static force fst = f0).

ρ = D(β,ξ) = ust D(β,ξ)
k
f0

Dynamic amplification factor D(β,ξ), expresses the degree 
of error, if an ‘equivalent’ static (instead of fully dynamic) 
analysis is performed 
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Unit impulse excitation

m

Ι∞

u(t))

c

f(t) f

t
1/ε

τ ε

Due to infinitesimal duration ε, during impulse damping 
and restoring forces are not activated. After impulse, the 
system performs a damped free vibration  with initial 
conditions u(τ) = 0, u’(τ) = 1/m, (change of momentum 
equal to applied force).



Unit impulse response function h(t-τ):

u(t) = h(t-τ) = e--ξω(t-τ) sin[ωd(t-τ)]
dωm

1

An impulse occurring at time τ, determines the response at 
a later time (t ≥ τ). Due to damping, the influence of an 
impulse weakens as the time interval increases (memory of 
vibration).

t

h(t-τ )

h(t-τ)

t1/m

τ



Response to arbitrary excitation
 f  

R esp o n se  to  1 st im p u lse  

R esp o n se  to  2 n d  im p u lse  

R esp o n se  to  ν th  im p u lse  

T o ta l re sp o n se  



In the limit, for infinitesimal time steps, the summation of 
impulse responses becomes an integral - known as 
Duhamel’s integral:

u(t) = = f(τ) e-ξωο(t-τ) sin[ωd(t-τ)]dτ∫
t

0

dτ ) f(τ τ)-h(t
dω m

1
∫
t

0

The above relation provides a means for determination of 
the response of a single degree elastic system subjected to 
arbitrary excitation (in analytical or digital form). 



Earthquake response spectra
 

 Athens 1999 (Splb1-L)
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Equation of motion

m u’’(t)  +  c u’(t)  + k u(t) = - m ag(t) = fg(t)
Duhamel

y(t) =                            =               ag(τ) e-ξωο(t-τ) sin[ωd(t-τ)]dτ∫
t

0
g dτ ) (τf τ)-h(t

dω
1
∫
t

0



For a system with 
ξ = 5% και Το = 0.5 s
(ωο = 12.57 rad/s)
the response was 
computed as 

 

ξ = 5%, Tο = 0.5 s
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For design purposes, only peak response parameters 
(displacement, velocity, acceleration, moments, shear 
forces ) are of interest. These peak values, express the 
seismic demand.

The seismic demand for systems with different periods is 
expressed via the response spectra.

Quasi-harmonic 
response
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Displacement response spectrum Sd (Athens 99, 
component SPLB1-L). 

The peak displacement values tend to increase with period 
(more flexible or taller structures, exhibit larger 
deflections).
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The previously noticed trend is not observed in Sv. After 
an initial rise, follows a relatively constant value range and 
then a decrease for large periods. 

Velocity response spectrum Sv
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Here, an initial increase of Sa is followed by a rapid 
decrease for periods above 0.4 sec. (Flexible structures do 
not oscillate rapidly small values of acceleration).

Acceleration response spectrum Sa

Actual shape depends on rapture characteristics and local 
soil conditions



If it is assumed that the response is quasi-harmonic with 
frequency equal to the natural frequency, then:

u(t) = umaxsinωt, u’(t) = umaxωcosωt, u’’(t) = - umaxω2sinωt

Therefore, the following (approximate) relations between 
response spectra are often implemented:

Sv ≈ ω0* Sd = P Sv, Sa ≈ ω0
2* Sd = PSa

where, P Sv = pseudo-spectral velocity and PSa = pseudo-
spectral acceleration 

These approximate relations enable us to present all 3 
response spectra with one tri-partite  logarithmic plot.





Design parameters of response spectra
m

k
fs= k*Sd = m* PSa

h

Vb = Base shear
Mb = Base moment

Vb =  fs = k*Sd

Mb = h* Vb

Column moment: Μc = * Sd = *2h
EIν

2h
EIν

2
ο

a

ω
PS

where, ν = 3 for hinged-end, ν = 6 for fixed-end columns.

Static equivalence
approach 



Spectral ‘static equivalence’ approach (exact - !) is not a 
fully static analysis approach (false - X).

ug(t)

=

fg(t) = -m ag(t) fs = -m PSa

Vb = fs

(!)

ug(t)

=

fg(t) = -m ag(t) fg,max = -m Pga

Vb ≠ fg,max

(X)







Two degree of freedom (2-dof) system

m1

Ι∞

u2(t)

Ι∞

m2

u1(t)

k1

k2

f2(t)

f1(t)

Two storey shear-frame 

Rigid beams 
Massless columns
Zero damping 



fI2 f2(t)

fS2bfS2a

fS2bfI1 f1(t)

fS1bfS1a

fS2a

fSj = fSja + fSjb = kj*(uj – ui) = restoring force due to 
columns connecting levels j-1 and j.

fIj = inertia force j = mj * ju

Dynamic equilibrium 

fI2 + fS21 = f2(t) → m2 + k2 (u2-u1) = f2(t)2u

fI1 + fS12 + fS10 = f1(t) → m1 + k2 (u1-u2) +k1 u1= f1(t)1u

System of coupled differential equations 



Matrix notation 
M + K U = F(t)U

Μ = mass matrix = 1

2

m 0
0 m

⎡ ⎤
⎢ ⎥
⎣ ⎦

1 2 2

2 2

k k k
k k
+ −⎡ ⎤

⎢ ⎥−⎣ ⎦
Κ = stiffness matrix =

1

2

f (t)
f (t)
⎡ ⎤
⎢ ⎥
⎣ ⎦

F(t) = force vector = 

1

2

u (t)
u (t)
⎡ ⎤
⎢ ⎥
⎣ ⎦

U = U(t) = displacement vector =



Free vibration of undamped 2-dof system

Μ*U’’ + K*U = 0

1

2

u (t)
u (t)
⎡ ⎤
⎢ ⎥
⎣ ⎦

1

2

φ cos(ωt θ)
φ cos(ωt θ)

−⎡ ⎤
⎢ ⎥−⎣ ⎦

1

2

φ
φ
⎡ ⎤
⎢ ⎥
⎣ ⎦

U(t) = =                              = cos(ωt-θ) = 

Φ cos(ωt-θ) 

(t) =       = = -ω2 Φ cos(ωt-θ)U
1

2

u (t)
u (t)
⎡ ⎤
⎢ ⎥
⎣ ⎦

2
1

2
2

ω φ cos(ωt θ)
ω φ cos(ωt θ)

⎡ ⎤− −
⎢ ⎥− −⎣ ⎦

M [-ω2 Φ cos(ωt-θ)] + K [Φ cos(ωt-θ)] = [0] →
{K - ω2 Μ} Φ cos(ωt-θ) = [0]

Unknowns are the amplitude vector Φ and the frequency 
of free oscillation ω.



{K - ω2 Μ} Φ cos(ωt-θ) = [0]

Should be valid for any time instant zero determinant

= [0]  → = [0] →

ω4 (m1m2) – ω2 {(k1+k2)m2 + k2m1} + k1k2 = 0

2Κ ω Μ−
2

1 2 1 2
2

2 2 2

k k m k
k k m

+ −ω −
− −ω

This is the frequency equation. Setting ω2 = λ, we get two 
solutions for λ and hence, two frequency values for free 
vibration λ1 = ω1

2 and λ2 = ω2
2. 

Therefore, a 2-dof system exhibits 2 natural frequencies, 
ω1 and ω2.  



{K – ωj
2 Μ} Φj cos(ωjt-θ) = [0]  → {K – ωj

2 Μ} Φj = [0]

Substituting ω1 and ω2 back into the matrix equation, the 
two corresponding amplitude vectors (eigenvectors) can be 
evaluated.

The eigenvalue problem does not fix the absolute 
amplitude of the vectors Φj , but only the shape of the 
vector (relative values of displacement)



Example

2m

Ι∞

u2(t)

Ι∞

m

u1(t)

2k

k



Natural frequencies determination

= 0 = 0 

2ω4 m2 – 5ω2 km + 2k2 = 0

2Κ ω Μ−
2

2

3k 2 m k
k k m

− ω −
− −ω

Roots of quadratic equation ω1
2 = k/2m και ω2

2 = 2k/m, 
with corresponding natural periods

Τ1 = 2π/ω1 = π ,          Τ2 = 2π/ω2 = π8m
k

2m
k

Modal shapes calculation



Eigenvectors Φ1 = and Φ2 = , are computed 
as:

11

21

φ
φ
⎡ ⎤
⎢ ⎥
⎣ ⎦

12

22

φ
φ
⎡ ⎤
⎢ ⎥
⎣ ⎦

ω1
2 = k/2m =         2φ11 = φ21

2k k
k k / 2

−⎡ ⎤
⎢ ⎥−⎣ ⎦

11

21

φ
φ
⎡ ⎤
⎢ ⎥
⎣ ⎦

0
0
⎡ ⎤
⎢ ⎥
⎣ ⎦

ω2
2 = 2k/m =         φ12 = -φ22

0
0
⎡ ⎤
⎢ ⎥
⎣ ⎦

12

22

φ
φ
⎡ ⎤
⎢ ⎥
⎣ ⎦

k k
k k

− −⎡ ⎤
⎢ ⎥− −⎣ ⎦

Setting (arbitrarily) φ21 = φ22 = 1.0, we get:

Φ1 = ,     Φ2 =          ,    και Φ =
0.5
1.0
⎡ ⎤
⎢ ⎥
⎣ ⎦

1
1
−⎡ ⎤
⎢ ⎥
⎣ ⎦

0.5 1
1 1

−⎡ ⎤
⎢ ⎥
⎣ ⎦





Orthogonality of modes

Eigenvectors are orthogonal with respect to mass and 
stiffness matrices. 

Φj
T M Φk = 0 and Φj

T Κ Φk = 0,  για j ≠ k 

Modal analysis

U(t) = = Φ Q(t)
2

j j
j 1

Φ q (t)
=
∑Set

M     + K U = [0] ΜΦ + Κ ΦQ(t) = [0]U Q(t)
Substitute to the matrix equation of motion:

Pre-multiply all terms with ΦΤ :

ΦΤ ΜΦ + ΦΤ ΚΦ Q(t) = [0] Μ*         + Κ* Q(t) = [0]Q(t) Q(t)



Due to orthogonality property the new matrices M* and 
K* are diagonal.

Μ*         + Κ* Q(t) = [0]Q(t)
The transformed matrix equation of free vibration, reads:

Μ* = generalized mass matrix =
*
1

*
2

m 0
0 m

⎡ ⎤
⎢ ⎥
⎣ ⎦

*
1

*
2

k 0
0 k

⎡ ⎤
⎢ ⎥
⎣ ⎦

Κ* = generalized stiffness matrix =

Therefore,  the original matrix equation is transformed 
into a set of uncoupled sdof free vibration equations of the 
form (for j = 1, 2):

*
jm jq (t) *

jk 2
jωjq (t)+      qj(t) = 0 + qj(t) = 0 



u2(t) = u21(t) + u22(t) = 
φ21 q1(t) + φ22 q2(t)

m1

m2

k1

k2

u1

u2

m*2

k*2

q2

m*1

k*1

q1

Modal decoupling



Forced vibration of a damped multi degree of 
freedom (mdof) system

U UΜ + C     + K U = F(t)

Original (coupled) equation of motion:

Modal (decoupled) equation of motion:
ΦΤMΦ + ΦΤCΦ + ΦΤKΦ Q = ΦΤ F(t) 
Μ* + C* + K* Q = F*(t)

Q
Q

Q
Q

To ensure diagonalization of C*, here the assumption is 
made that the damping matrix of the original system C can 
be expressed as C = α·Μ + β·Κ

where, C* = generalized damping matrix and F* = 
generalized force vector.



*
jm jq *

jc jq *
jk *

jf (t) jq
*
j

*
j

f (t)
m jf (t)+ +     qj = +2ξjωj       +ωj

2qj = =jq

Typical generalized (sdof) equation of motion:

To be solved within the framework of sdof theory (1st part 
of presentation). 

Following the determination of generalized vector Q, the 
original response vector U is computed as

U(t) = Φ Q(t) = 
ν

j j
j 1

Φ q (t)
=
∑

The contribution of first modes are much more important 
than the contribution of higher modes.



Earthquake excitation of mdof systems
(Response spectrum analysis)

ν-storey shear 
plane frame under 
ground  motion 
ug(t)



The total displacement vector Ut(t), is composed by the 
relative displacement vector U(t) and the ground motion. 

Ut(t) = U(t) +[1]ug(t)



The matrix equation of motion of the original system is:

U UΜ + C     + K U = - Μ [1] ag(t) = Fg(t)

Firstly we compute ωj και Φj, and then we proceed to the 
modal transformation

ΦΤMΦ + ΦΤCΦ + ΦΤKΦ Q = ΦΤ Fg(t) 
Μ* + C* + K* Q = F*(t)

Q
Q

Q
Q

Here, the generalized force vector is 
F*(t) = ΦΤ Fg(t) = - ΦΤ Μ [1] ag(t)



The sdof generalized equations are

jq
*
j

*
j

f (t)
m+ 2ξjωj       + ωj

2qj = = - ag(t) = - Γj ag(t)jq

ν

k kj
k 1
ν

2
k kj

k 1

m φ

m φ

=

=

∑

∑

The generalized force parameter Γj is known as modal 
participation factor.

If the seismic action is expressed via the standard response 
or design spectra, the corresponding spectral values of the 
generalized response qj, are  

Sd,j = Γj Sd(Tj,ξj),    Sv,j = Γj Sv(Tj,ξj),    Sa,j = Γj Sa(Tj,ξj)



Example of utilization of Greek Design spectrum (EAK) 
for the estimation of modal spectral accelerations of a 
mdof frame

The ordinates 
of the design 
spectrum 
should be 
multiplied 
by the 
corresponding
modal 
participation 
factors Γj.



The problem of combination of modal peak values

The following decomposition of physical response uj in 
terms of generalized (modal) components qk is valid for 
any instant of time.  

uj(t) = =
ν

jk k
k 1

φ q (t)
=
∑

ν

jk
k 1

u (t)
=
∑

where ujk(t) is the ‘contribution’ of k modal component
qk(t) to the response of the j degree of freedom uj(t) of the 
original system. 

However, if only spectral (peak) modal response quantities 
are available

= φj,k Γk Sd(Tk,ξk)jku

these do not occur at the same time and hence, cannot be 
added to obtain the peak value of uj(t) 



Modal contributions 
u3k(t) (for k = 1,2,3) 
to the response of 
the top floor of a 3-
storey frame

(4.91 + 1.56 + 0.10) =
6.57 > 5.16

(      +      +      ) =31u 32u 33u

=                                   = 5.15 ≈ 5.162 2 2
31 32 33u u u+ + 2 2 24.91 1.56 0.10+ +

Modal combination
rule SRSS



THE END


