FUNDAMENTALS OF
STRUCTURAL DYNAMICS

Original draft by
Prof. G.D. Manolis, Department of Civil Engineering
Aristotle University, Thessaloniki, Greece

Final draft - Presentation

Prof. P.K. Koliopoulos, Department of Structural Engineering,
Technological Educational Institute of Serres, Greece




e Topics:

* Revision of single degree-of freedom vibration theory
 Response to sinusoidal excitation
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 Response spectrum
« Multi-degree of freedom structures
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Why dynamic analysis? = Loads change with time
Unit impulse
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Single degree of freedom (sdof) system

u(t)

mass-spring-damper
——  system

()

®)

Mass m (kgr, tn), spring parameter k (kN/m), viscous

damper parameter ¢ (kN*sec/m), displacement u(t) (m),
excitation f(t) (kN).



g |
(a) (c) (d)
ky = 126013 k, = AEIL k, = 2AEq/L

Figure 2.1 (a) SDOF modelling of a single story frame for (b) horizontal, (c) vertical and
(d) rotational oscillations.

Definitions of restoring force parameter k




Dynamic equilibrium — D’Alembert’s principle

i(t) = 1;(t) + £;,(t) + £5(t) 1
Inertia force fi(t), fp(t) f(t)
Damping force f,(t) N -

Restoring (elastic) force f(t)
ts(® O O

Setting response parameters as: displacement u(t) (in m),
velocity u’(t) (in m/s) and acceleration u’’(t) (in m/s?),
then:

f[(=mu’(), fHE)=cuw (), f(t)=ku(t).



Shear plane frame - dynamic parameters

q

Rigid beam, mass Iless
columns. Total weight
(mass) accumulated in the
- i middle of the beam.
1 : AB - Fixed end

| | CD - Hinged end

m = w/g = (ql)/g

k=f (u=1)=V,, + V., =12EI/h3+ 3EI/h3= 15EI/h3



Free vibration with no damping
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No external force 1(t). Oscillations due to initial conditions
at t = (0. Initial displacement u, or/and initial velocity u’,

mu’’(t) + ku(t)=0
u(t) = R, sin ot + R, cos ot = R sin(®t+0)
where R> = R,? + R,? and tan 0 = R,/R,

Natural frequency o = [k/m]!/? (rad/s),
Nat. period T = 27/m (sec)



=T =2n/o,

t(s)

Unrealistic — no decay



° ° I F
Kree vibration 5 N
with damping c
A’,,,,‘ A'IJG'I’A

Equation of motion = Homogeneous 2" order-ODE:
mu’(t) + cuw(t)+ ku(t)=0

Characteristic equation (mr:+cr+k)=0

2
k
and roots: r,, ==+ \/(20 o
’ m m



> () [c/2m]% — k/m = 0 >

C k =)
Cc.,.=2 Jk*m =2mo,

"m? m V- - - -
zm) <0 l oscillat ¢ _ = critical damping
ion
C C
Critical damping ratio {=— =
C., 2ma,

For £ <1.0, and setting @, =, /] - £

u(t) = et (R, sin o4t + R, cos o,t) = R et sin(wt+0)

u, Tu,co R
R, = —° 05 , R,=u,, R=\/R12+R§ , tan9=E2

1




er = 27'5/0)(1 >



Range of damping for most

structures

Logarithmic decrement o = 2n&, relates the magnitude of

successive peaks
27ne

In(R/R;,))=n M ~ n*2né =no




Oscillation due to ground motion

Total displacement (u,), m
ground displacement (u,), L
.'::c

relative displacement (u).
u(t) = ug(t) + u(t)
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Dynamic equilibrium:
f+1,+1,=0

=
f,=mu/’(t) t, =cu’(t) f =Kk u(t)

Equation of motion:
mu’’(t)+cw(t)+ku(t)=0

oI o o o = = =
..-...
g
»




Setting u/’(t) = a,(t) + u’(t), where a,(t) = ground
acceleration, the equation of motion becomes:

m u”(t) + ¢ w’(t) + k u(t) = - m a,(t) = f,(t)

The above is the equation of motion of a fixed-base frame
under an external dynamic force fg(t).

m | m () =-mayt)
C
- = C
k Ly Kk —H=



Harmonic excitation

f, sinwt

Force with amplitude f, and excitation frequency ®

Equation of motion = Non-homogeneous 2"d order-ODE:

m u(t) +cu(t) + ku(t) = f,sin o t.




Two part solution = u(t) = u (t) + u (t)

Complementary component (transient)

u (t) = et (C, sin o4t + C, cos m4t)

Particular component (steady-state)

f 1
u(t) = ~ = * sin( @ t-0) = p sin(@ t-0)
Kk J(1-B*) +(2*pE)
[6)
where P = (D— = frequency ratio
0

Phase 0 is determined via the relation: tan 0 =

1-p>



The steady-state peak p is related to the peak of the static
response u (corresponding to static force f, = f).

EO D(B,3) = uy D(P,c)

Dynamic amplification factor D(B,E), expresses the degree
of error, if an ‘equivalent’ static (instead of fully dynamic)
analysis is performed



1
(1-B*)" +(2*pE)’

D(B,S) =




Unit impulse excitation

¢ I 1/¢

s

Due to infinitesimal duration &, during impulse damping
and restoring forces are not activated. After impulse, the
system performs a damped free vibration with initial
conditions u(t) = 0, v’(tr) = 1/m, (change of momentum
equal to applied force).



Unit impulse response function h(t-t):

u(t) = h(t-t) = e~ sin| @ (t-1)]

ma,

WA
-\

\/

An impulse occurring at time 1, determines the response at
a later time (t = 7). Due to damping, the influence of an
impulse weakens as the time interval increases (memory of
vibration).



Response to arbitrary excitation

ramiii \\/

Hl—-—d’c
T

., Response to 1° impulse

. Response to 2" impulse

h -
. Response to v" impulse

/-_-\
T —

Total response




In the limit, for infinitesimal time steps, the summation of
impulse responses becomes an integral - Kknown as
Duhamel’s integral:

t 1 t
u(t) = Jh(t-r) o) de = —— J f(t) €09t sin[o (t-7)]dT

d

The above relation provides a means for determination of
the response of a single degree elastic system subjected to
arbitrary excitation (in analytical or digital form).



Earthquake response spectra

400
300

Athens 1999 (Splbl-L)

200 -
100
cm/s® 0 -
-100
-200
-300

-400
Equation of motion

mu’() + cuw(t) + ku(t)=-m ag(t) = fg(t)

Duhamel
t

y(t) = Jh(t Df,(1)dr= — | ar) e sin[o,(t-1)]dr

s
W4



For a system with
C=5% xan T, =05s
(o, =12.57 rad/s)

the response was
computed as 2>

£=5%,T,=0.5s

Quasi-harmonic
response

For design purposes, only peak response parameters
(displacement, velocity, acceleration, moments, shear
forces ) are of interest. These peak values, express the
seismic demand.

The seismic demand for systems with different periods is
expressed via the response spectra.






Displacement response spectrum S; (Athens 99,
component SPLB1-L).

The peak displacement values tend to increase with period
(more flexible or taller structures, exhibit larger
deflections).




Velocity response spectrum S

The previously noticed trend is not observed in S . After
an initial rise, follows a relatively constant value range and
then a decrease for large periods.




Acceleration response spectrum S,

Here, an initial increase of S, is followed by a rapid
decrease for periods above 0.4 sec. (Flexible structures do
not oscillate rapidly - small values of acceleration).

Actual shape depends on rapture characteristics and local
soil conditions




If it is assumed that the response is quasi-harmonic with
frequency equal to the natural frequency, then:

u(t) =u__sinot, w’(t) =u_. ocosmt, u”’(t)=-u__ o’sinot

Therefore, the following (approximate) relations between
response spectra are often implemented:

S, 2m,*S;=PS, S, ~wm2*S,=PS,

where, P S = pseudo-spectral velocity and PS, = pseudo-
spectral acceleration

These approximate relations enable us to present all 3
response spectra with one tri-partite logarithmic plot.



m/sec)

Ly

Pseudo-velocity S,

o,

0.1 0.2 ‘0.4} 0.6

Figure 2.29 Triple spectrum for the Kalamata, Greece 1986 earthquake: velocity (cm/
sec) along vertical axis; acceleration (g) along left to right axis; relative

displacement (cm) along right to left axis; all versus frequency (Hz). Note:
the five curves are for 0%, 2%, 5%, 10% and 20% damping.

Frequency (Hz)




Design parameters of response spectra

m
= k* — %
Static equivalence . . I=k*Sq=m* PS,
approach
Vi = £ = k55, V,, = Base shear
M, =h*V_ \ } M =B
p, = base moment
. _VvEl __ _VvEl _PS,
Column moment: M = 2 Sy = 2 o’

where, v = 3 for hinged-end, v = 6 for fixed-end columns.



Spectral ‘static equivalence’ approach (exact - !) is not a
fully static analysis approach (false - X).

f,(t) =-m a(t) . =-m PSa
()
- > 4
u,(t) Vi =1,
f () =-ma ) fymas = -m Pga.
_ (X)
>

u,(t) Vi # fyman



(a) Problem description

Column stiffness computation:

0 =12EI/p

k=40 = 48EI/h*> = 16,600 kN/m
Mass computation:

M = (plb)/g = 36.7 kN sec’ /m
Damping coefficient:

(=¢/cy = 10% = 0.1

h=i6m

=12 m
a b =6m

p = 5kN/m*
E = 35,000 MPa
I =0.00213 m"

Column cross-section: 0.4 X 0.4 m




(b) SDOF system model ’_ﬂ "

k
k 16, 600 1T AN M
Ww=14{/—= = 21.3 radsec / <
M 36.7 DTTTTTTTT 77777777

o B
- >

T=2r/w=030sec, f=1/T=338Hz Y,

(c) Response spectrum computations

From the triple Kalamata 1986 earthquake tesponse spectrum given in Figure 2.2,

we have:

o maximum relative displacement is # = y — y, = 1.8 cm;
¢ maximum velocity 1s y = 35 cm|sec;

maximum acceleration is j = 0.7 g = 6.87 m/sec’;
maximum columa shear is I/ = (kx)/4 = 16,600(0.018)/4 = 74.7 kN; and
maximum column shear stress is 7 = 1/ /A = 74.7/(0.4%) = 467 kN/m’




Two degree of freedom (2-dof) system

m }lZ(t) fz(t)
........... mu—
Rigid beams \ Kk /
Massless columns ’
Zero damping R m, u(®
I R0
\ ) /

Two storey shear-frame



Dynamic equilibrium

fIZ fSZa fSZb

— L0 — Ju TN £ (t

| [ _IL.)
fSZa fSZb fSla fSlb

ij = inertia force j = m; * U,

tg; = 5. T I = K™(w; — uy) = restoring force due to

columns connecting levels j-1 and j.
i, +f5,, = 5H,() — m, U, + Kk, (u,-u)) =1£,(t)

£y + 515 + £ = £1(0) — my U, + K, (u;-u,) +k; u,= £ (t)

System of coupled differential equations




Matrix notation

M U +KU=F(t)

U = U(t) = displacement vector =

M = mass matrix =

K = stiffness matrix =

F(t) = force vector =

(1)

(1)

u, (1)

U, (1)




Free vibration of undamped 2-dof system

M*U” + K*U =0

w ()| [ocos(wt-0)] [o
U(t) = = = cos(mt-0) =
U, (t)_ P, COS((D'[—@)_ P,
D cos(mt-0)
()| [ —? —0)
{7 (1) = "1( ) _ | —0°¢, cos(wt—=0) | _ -,  cos(ort-0)
WL ] | -0, cos(ot—0)

M [-®2 D cos(mwt-0)] + K [P cos(wt-0)] = [0] —
K - ©* M} ® cos(ot-0) = [0]

Unknowns are the amplitude vector ® and the frequency
of free oscillation m.




K - ®* M} @ cos(mt-0) = [0]

Should be valid for any time instant - zero determinant

‘K—(DzM‘ =[0] —

k, +k, —o’m,
—k,

_k2

2
k, —®'m,

=10] —

o! (mm,) - o? {(k,+k,)m, + k,m,} + k,k,=0

This is the frequency equation. Setting ®? = A, we get two
solutions for A and hence, two frequency values for free
vibration A, = ®,% and A, = o,

Therefore, a 2-dof system exhibits 2 natural frequencies,

®; and o,.




Substituting ®, and ®, back into the matrix equation, the
two corresponding amplitude vectors (eigenvectors) can be
evaluated.

{K-o0.M; ®; cos(w;t-0) = [0] — {K - o.M} ®. = [0]

The eigenvalue problem does not fix the absolute
amplitude of the vectors @, , but only the shape of the
vector (relative values of displacement)



u, (t)

2k

FFFrrrry

2mii; +2ku, +k(n, —u,) =0

| MU+KU=0
mii, +k{(u, —u,)=0




Natural frequencies determination

K-o’™|=0-> R BPUR
e Kk k-o’m|

204 m?2 — 50?2 km +2k2=0

Roots of quadratic equation o> = k/2m kot ®,? = 2k/m,
with corresponding natural periods

T, =2mlo = o0, T,=2n/e,=n ™

k k

Modal shapes calculation 2>



R _(P _
Eigenvectors @, = g and @, = N , are computed
as: Py | R

ram s | 2K K] [en] 2|0 5,
(D — m — —

1 _—k k/2_ 0, 0 P11 = Py

-k -k 0, 0
> ¢y, =-
I “k =k 0, 0 P12 N3

®,%> =2k/m =

Setting (arbitrarily) ¢,, = ¢,, = 1.0, we get:

0.5 —1 0.5 -1
1.0 1 11




PSS,




Orthogonality of modes

Eigenvectors are orthogonal with respect to mass and
stiffness matrices.
(I)jTM(I)k=0and (I)jTK(I)k=0, Y j #K

Modal analysis

2
Set U =, 0,q,(t) =@ Q(t)
j=1
Substitute to the matrix equation of motion:
MU+KU=[0] >M® Q(t) + K ®Q(t) = [0]

Pre-multiply all terms with ®7 :
®T M® Q(t) + ®T K® Q(t) = [0] >M*Q(t) + K* Q(t) = [0]



The transformed matrix equation of free vibration, reads:

M= Q(t) + K* Q(t) = [0]

Due to orthogonality property the new matrices M* and

K* are diagonal.

M* = generalized mass matrix =

K* = generalized stiffness matrix =

Therefore, the original matrix equation is transformed
into a set of uncoupled sdof free vibration equations of the

form (for j =1, 2):

m; q;() +k; q;(®=0-> G;() + o] q;() =0

J

k

*

1

0

0k



Modal decoupling

* @ —
m=,® q,

N
N
N
\
N

m, ¢ — u, u,(t) = u,,(t) + u,,(t) =
05 q;(t) + @5, q,(1)

T, %
m=,® q,

k*,

XTI TITT?



Forced vibration of a damped multi degree of
freedom (mdof) system

Original (coupled) equation of motion:
M{+CU+KU-=F()

Modal (decoupled) equation of motion:

O ™MD Q+ PTCHQ + PTKD Q = T F(t) >

M*Q+ C*Q+ K* Q=F*(t)
where, C* = generalized damping matrix and F* =
generalized force vector.

To ensure diagonalization of C*, here the assumption is
made that the damping matrix of the original system C can
be expressed as C=uoM+pK



Typical generalized (sdof) equation of motion:
e . . . £ (t) .
m; q; +¢; q;+k; q; = f(t) 2> d;+2&0; 4;+0.2q; = Jm = f.(1)

J

To be solved within the framework of sdof theory (15t part
of presentation).

Following the determination of generalized vector Q, the
original response vector U is computed as

U® =@ Q(t) = 2, Pq;(1)

The contribution of first modes are much more important
than the contribution of higher modes.




Earthquake excitation of mdof systems
(Response spectrum analysis)

v-storey shear
plane frame under
ground motion

u,(t)

| |- uy(t)




The total displacement vector U((t), is composed by the
relative displacement vector U(t) and the ground motion.

U (t) = U()) +1]u,(t)

?

» m; ag(t)

> my ay(t)

IIENEE




The matrix equation of motion of the original system is:

MU+CU+KU=-M/[I] a,t)=Ft)

Firstly we compute o; kaw @;, and then we proceed to the
modal transformation

OTM® Q)+ @TCPQ + PTK® Q = @ F,(t) >
M* Q-+ C*Q+K* Q = F¥(t)

Here, the generalized force vector is
F*(t) = ®! F(t) = - ®T M [1] a,(t)



The sdof generalized equations are

. . £ (1) 2.0y
U+ 250 4; + 0fq, =m0 o =-1ja,0)
J

2
Z M, @y
k=1

The generalized force parameter I'; is known as modal
participation factor.

If the seismic action is expressed via the standard response
or design spectra, the corresponding spectral values of the
generalized response q;, are

Sd,j = Fj Sd(Tjagj)a Sv,j = Fj SV(Tjagj)a Sa,j = Fj Sa(Tjagj)



Example of utilization of Greek Design spectrum (EAK)
for the estimation of modal spectral accelerations of a
mdof frame

The ordinates
of the design
spectrum
should be
multiplied

by the
corresponding
modal
participation
factorsI'..

EAK - (All,y=6=1,q=3.5)

—
|

®d (misec™2)

i
w»

U!-
0

Ta=0.11 sec T2 =0.18 sec T4=0.53 sec



The problem of combination of modal peak values

The following decomposition of physical response u; in

terms of generalized (modal) components q, is valid for
any instant of time.

u;(t) = Z(ijqk (t) = Zujk (t)
k=1 S

where ujk(t) is the ‘contribution’ of kK modal component
q,(t) to the response of the j degree of freedom u,(t) of the
original system.

However, if only spectral (peak) modal response quantities

are available B
U= @5 Iy Sa(TisS))

these do not occur at the same time and hence, cannot be
added to obtain the peak value of u(t)



Modal contributions
uy, (t) (for k =1,2,3)
to the response of
the top floor of a 3-
storey frame

(ﬁ31 +ﬁ32+ﬁ33) -

(4.91 + 1.56 + 0.10) =
6.57 > 5.16

Modal combination
rule SRSS

Ui, +15, + U5, =+4.91 +1.56° +0.10° = 5.15 ~ 5.16




Design Technology Challenge
@

Linear analysis - base shear capacity

THE END




