FUNDAMENTALS OF STRUCTURAL DYNAMICS

Original draft by
Prof. G.D. Manolis, Department of Civil Engineering Aristotle University, Thessaloniki, Greece

Final draft - Presentation
Prof. P.K. Koliopoulos, Department of Structural Engineering,
Technological Educational Institute of Serres, Greece

- Topics :
- Revision of single degree-of freedom vibration theory
- Response to sinusoidal excitation
- Response to impulse loading
- Response spectrum
- Multi-degree of freedom structures

References :

R.W. Clough and J. Penzien 'Dynamics of Structures' 1975
A.K.. Chopra 'Dynamics of Structures: Theory and Applications to Earthquake Engineering' 20011
G.D. Manolis, Analysis for Dynamic Loading, Chapter 2 in Dynamic Loading and Design of Structures, Edited by A.J. Kappos, Spon Press, London, pp. 31-65, 2001.

Why dynamic analysis? \rightarrow Loads change with time

Unit impulse

Single degree of freedom (sdof) system

mass-spring-damper system

Mass m (kgr, tn), spring parameter \mathbf{k} ($\mathbf{k N} / \mathbf{m}$), viscous damper parameter c (kN*sec/m), displacement $\mathbf{u}(\mathrm{t})(\mathrm{m})$, excitation $\mathrm{f}(\mathrm{t})(\mathrm{kN})$.

(a)

(b)

$$
k_{h}=12 E / / L^{3}
$$

(c)
$k_{v}=A E / L$

(d) $k_{r}=2 A E a^{2} / L$

Figure 2.1 (a) SDOF modelling of a single story frame for (b) horizontal, (c) vertical and (d) rotational oscillations.

Definitions of restoring force parameter \mathbf{k}

Dynamic equilibrium - D'Alembert's principle
$\mathbf{f}(\mathbf{t})=\mathbf{f}_{\mathbf{I}}(\mathbf{t})+\mathbf{f}_{\mathrm{D}}(\mathbf{t})+\mathbf{f}_{\mathbf{S}}(\mathbf{t})$
Inertia force $f_{I}(t)$,
Damping force $f_{D}(\mathbf{t})$
Restoring (elastic) force $f_{S}(t)$

Setting response parameters as: displacement $\mathbf{u}(\mathbf{t})$ (in m), velocity $\mathbf{u}^{\prime}(\mathrm{t})$ (in m / s) and acceleration $\mathbf{u}^{\prime \prime}(\mathrm{t})$ (in $\mathrm{m} / \mathrm{s}^{2}$), then:
$\mathbf{f}_{\mathbf{I}}(\mathbf{t})=\mathbf{m} \mathbf{u}^{\prime}{ }^{\prime}(\mathbf{t}), \quad \mathbf{f}_{\mathrm{D}}(\mathrm{t})=\mathbf{c} \mathbf{u}^{\prime}(\mathbf{t}), \quad \mathbf{f}_{\mathbf{S}}(\mathrm{t})=\mathbf{k} \mathbf{u}(\mathrm{t})$.

Shear plane frame - dynamic parameters

Rigid beam, mass less
columns. Total weight (mass) accumulated in the middle of the beam.
AB - Fixed end
CD - Hinged end

$$
\begin{aligned}
& m=w / g=(q l) / g \\
& k=f_{s t}(u=1)=V_{B A}+V_{\Gamma \Delta}=12 E I / h^{3}+3 E I / h^{3}=15 E I / h^{3}
\end{aligned}
$$

Free vibration with no damping

No external force $f(t)$. Oscillations due to initial conditions at $t=0$. Initial displacement u_{0} or/and initial velocity u_{0}^{\prime}

$$
\mathbf{m} \mathbf{u}^{\prime \prime}(\mathrm{t})+\mathbf{k} \mathbf{u}(\mathrm{t})=\mathbf{0}
$$

$\mathbf{u}(\mathbf{t})=\mathbf{R}_{1} \sin \omega t+\mathbf{R}_{\mathbf{2}} \cos \omega t=\mathbf{R} \sin (\omega t+\theta)$ where $\mathbf{R}^{\mathbf{2}}=\mathbf{R}_{\mathbf{1}}{ }^{2}+\mathbf{R}_{\mathbf{2}}{ }^{\mathbf{2}}$ and $\tan \boldsymbol{\theta}=\mathbf{R}_{\mathbf{2}} / \mathbf{R}_{\mathbf{1}}$

Natural frequency $\omega=[\mathrm{k} / \mathrm{m}]^{1 / 2}(\mathrm{rad} / \mathrm{s})$,
Nat. period T = $2 \pi / \omega$ (sec)

Unrealistic - no decay

Equation of motion \rightarrow Homogeneous $2^{\text {nd }}$ order-ODE:

$$
\mathbf{m} \mathbf{u}^{\prime}{ }^{\prime}(\mathbf{t})+\mathbf{c} \mathbf{u}^{\prime}(\mathbf{t})+\mathbf{k} \mathbf{u}(\mathbf{t})=\mathbf{0}
$$

Characteristic equation

$$
\left(\mathrm{mr}^{2}+\mathrm{cr}+\mathrm{k}\right)=0
$$

and roots: $r_{1,2}= \pm \sqrt{\frac{c^{2}}{(2 m)^{2}}-\frac{k}{m}}$

$\mathrm{c}^{2} \mathrm{k} \quad\left[\begin{array}{l}>0 \\ =0\end{array} \quad[\mathrm{c} / 2 \mathrm{~m}]^{2}-\mathrm{k} / \mathrm{m}=0 \boldsymbol{0}\right.$
 $\mathrm{c}_{\mathrm{cr}}=$ critical damping ion

Critical damping ratio $\xi=\frac{\mathrm{c}}{\mathrm{c}_{\mathrm{cr}}}=\frac{\mathrm{c}}{2 \mathrm{~m} \omega_{0}}$
For $\xi<1.0$, and setting $\quad \omega_{d}=\omega_{0} \sqrt{1-\xi^{2}}$
$\mathbf{u}(\mathbf{t})=\mathrm{e}^{-\xi \omega_{0} \mathrm{t}}\left(\mathbf{R}_{1} \sin \omega_{\mathrm{d}} t+R_{2} \cos \omega_{\mathrm{d}} t\right)=R^{-5 \omega_{0} t} \sin \left(\omega_{\mathrm{d}} t+\theta\right)$

$$
\mathbf{R}_{1}=\frac{\dot{\mathrm{u}}_{0}+\mathrm{u}_{0} \xi \omega_{0}}{\omega_{\mathrm{d}}}, \quad \mathbf{R}_{\mathbf{2}}=\mathbf{u}_{0}, \quad \mathbf{R}=\sqrt{\mathrm{R}_{1}^{2}+\mathrm{R}_{2}^{2}}, \quad \tan \theta=\frac{R_{2}}{R_{1}}
$$

$$
\leftarrow \mathrm{T}_{\mathrm{d}}=2 \pi / \omega_{\mathrm{d}} \gg
$$

Logarithmic decrement $\delta=2 \pi \xi$, relates the magnitude of successive peaks

$$
\ln \left(\mathbf{R}_{\mathrm{j}} / \mathbf{R}_{\mathrm{j}+\mathrm{n}}\right)=\mathrm{n} \frac{2 \pi \xi}{\sqrt{1-\xi^{2}}} \approx \mathrm{n} * 2 \pi \xi=n \delta
$$

Oscillation due to ground motion

Total displacement (u_{t}),
 ground displacement (\mathbf{u}_{g}), relative displacement (\mathbf{u}).

$$
u_{t}(t)=u_{g}(t)+u(t)
$$

Dynamic equilibrium:
$\mathrm{f}_{\mathrm{I}}+\mathrm{f}_{\mathrm{D}}+\mathrm{f}_{\mathrm{S}}=\mathbf{0}$

$$
\mathbf{u}_{\mathbf{g}}
$$

$\mathrm{f}_{\mathrm{I}}=\mathrm{m} \mathrm{u}_{\mathrm{t}}{ }^{\prime \prime}{ }^{\prime}(\mathrm{t}) \quad \mathrm{f}_{\mathrm{D}}=\mathrm{cu} \mathrm{u}^{\prime}(\mathrm{t}) \quad \mathrm{f}_{\mathrm{S}}=\mathrm{k} \mathbf{u}(\mathrm{t})$
Equation of motion:

$$
m u_{t}^{\prime \prime}(t)+c u^{\prime}(t)+k u(t)=0
$$

Setting $\mathbf{u}_{\mathbf{t}}{ }^{\prime \prime}(\mathbf{t})=\mathbf{a}_{\mathbf{g}}(\mathbf{t})+\mathbf{u}^{\prime \prime}(\mathbf{t})$, where $\mathbf{a}_{\mathbf{g}}(\mathbf{t})=$ ground acceleration, the equation of motion becomes:

$$
\mathbf{m} \mathbf{u}^{\prime \prime}(\mathbf{t})+\mathbf{c} \mathbf{u}^{\prime}(\mathbf{t})+\mathbf{k u} \mathbf{u}(\mathbf{t})=-\mathbf{m} \mathbf{a}_{\mathrm{g}}(\mathbf{t})=\mathbf{f}_{\mathrm{g}}(\mathbf{t})
$$

The above is the equation of motion of a fixed-base frame under an external dynamic force $f_{g}(t)$.

Harmonic excitation

Force with amplitude f_{0} and excitation frequency $\bar{\omega}$ Equation of motion \rightarrow Non-homogeneous $2^{\text {nd }}$ order-ODE:
$\mathrm{m} \ddot{\mathrm{u}}(\mathrm{t})+\mathrm{c} \dot{\mathrm{u}}(\mathrm{t})+\mathrm{k} \mathbf{u}(\mathrm{t})=\mathrm{f}_{0} \sin \bar{\omega} \mathrm{t}$.

Two part solution $\rightarrow \mathrm{u}(\mathrm{t})=\mathrm{u}_{\mathrm{c}}(\mathrm{t})+\mathrm{u}_{\mathrm{p}}(\mathrm{t})$

Complementary component (transient)

$$
\mathbf{u}_{\mathbf{c}}(\mathbf{t})=\mathrm{e}^{-\xi \omega_{0} t}\left(\mathrm{C}_{1} \sin \omega_{d} t+C_{2} \cos \omega_{d} t\right)
$$

Particular component (steady-state)

$$
\mathbf{u}_{\mathbf{p}}(\mathbf{t})=\frac{\mathrm{f}_{0}}{\mathrm{k}} \frac{1}{\sqrt{\left(1-\beta^{2}\right)^{2}+(2 * \beta \xi)^{2}}} * \sin (\bar{\omega} \mathbf{t}-\boldsymbol{\theta})=\rho \sin (\bar{\omega} \mathbf{t}-\boldsymbol{\theta})
$$

$$
\text { where } \beta=\frac{\bar{\omega}}{\omega_{0}}=\text { frequency ratio }
$$

Phase $\boldsymbol{\theta}$ is determined via the relation: $\tan \boldsymbol{\theta}=\frac{2 \xi \beta}{1-\beta^{2}}$

The steady-state peak ρ is related to the peak of the static response $u_{s t}$ (corresponding to static force $f_{s t}=f_{0}$).

$$
\boldsymbol{\rho}=\frac{\mathrm{f}_{0}}{\mathrm{k}} \mathbf{D}(\boldsymbol{\beta}, \xi)=\mathrm{u}_{\mathrm{st}} \mathbf{D}(\boldsymbol{\beta}, \boldsymbol{\xi})
$$

Dynamic amplification factor $\mathbf{D}(\boldsymbol{\beta}, \xi)$, expresses the degree of error, if an 'equivalent' static (instead of fully dynamic) analysis is performed

$$
\mathbf{D}(\beta, \bar{\xi})=\frac{1}{\sqrt{\left(1-\beta^{2}\right)^{2}+\left(2^{*} \beta \xi\right)^{2}}}
$$

Unit impulse excitation

Due to infinitesimal duration ε, during impulse damping and restoring forces are not activated. After impulse, the system performs a damped free vibration with initial conditions $u(\tau)=0, u^{\prime}(\tau)=1 / m$, (change of momentum equal to applied force).

Unit impulse response function $h(t-\tau)$:

$$
\mathbf{u}(\mathbf{t})=\mathbf{h}(\mathbf{t}-\tau)=\frac{1}{m \omega_{\mathrm{d}}} \mathrm{e}^{--\xi \omega(t-\tau)} \sin \left[\omega_{\mathrm{d}}(\mathrm{t}-\tau)\right]
$$

An impulse occurring at time τ, determines the response at a later time ($\mathrm{t} \geq \tau$). Due to damping, the influence of an impulse weakens as the time interval increases (memory of vibration).

Response to arbitrary excitation

In the limit, for infinitesimal time steps, the summation of impulse responses becomes an integral - known as Duhamel's integral:

$$
u(t)=\int_{0}^{t} h(t-\tau) f(\tau) d \tau=\frac{1}{m \omega_{d}} \int_{0}^{t} f(\tau) e^{-\xi \operatorname{\omega og}(t-\tau)} \sin \left[\omega_{d}(t-\tau)\right] d \tau
$$

The above relation provides a means for determination of the response of a single degree elastic system subjected to arbitrary excitation (in analytical or digital form).

Earthquake response spectra

Equation of motion

$$
\mathbf{m} \mathbf{u}^{\prime} \prime(\mathbf{t})+\mathbf{c} \mathbf{u}^{\prime}(\mathbf{t})+\mathbf{k} \mathbf{u}(\mathbf{t})=-\mathbf{m} \mathbf{a}_{\mathbf{g}}(\mathbf{t})=\mathbf{f}_{\mathbf{g}}(\mathbf{t})
$$

Duhamel

$\mathbf{y}(\mathrm{t})=\int_{0}^{\mathrm{t}} \mathrm{h}(\mathrm{t}-\tau) \mathrm{f}_{\mathrm{g}}(\tau) \mathrm{d} \tau=\frac{1}{\omega_{\mathrm{d}}} \int_{0}^{\mathrm{t}} \mathbf{a}_{\mathrm{g}}(\tau) \mathrm{e}^{-\xi \omega 0(t-\tau)} \sin \left[\omega_{\mathrm{d}}(\mathrm{t}-\tau)\right] \mathrm{d} \tau$

For a system with
$\xi=5 \% \mathrm{k} \alpha \mathrm{l} \mathrm{T}_{\mathrm{o}}=0.5 \mathrm{~s}$
$\left(\omega_{0}=12.57 \mathrm{rad} / \mathrm{s}\right)$
the response computed as \rightarrow

Quasi-harmonic response

For design purposes, only peak response parameters (displacement, velocity, acceleration, moments, shear forces) are of interest. These peak values, express the seismic demand.

The seismic demand for systems with different periods is expressed via the response spectra.

Displacement response spectrum S_{d} (Athens 99, component SPLB1-L).

The peak displacement values tend to increase with period (more flexible or taller structures, exhibit larger deflections).

Velocity response spectrum S_{v}

The previously noticed trend is not observed in \mathbf{S}_{v}. After an initial rise, follows a relatively constant value range and then a decrease for large periods.

Acceleration response spectrum S_{a}
Here, an initial increase of S_{a} is followed by a rapid decrease for periods above 0.4 sec . (Flexible structures do not oscillate rapidly \rightarrow small values of acceleration).
Actual shape depends on rapture characteristics and local soil conditions

If it is assumed that the response is quasi-harmonic with frequency equal to the natural frequency, then:

$$
\mathbf{u}(\mathbf{t})=\mathbf{u}_{\max } \sin \omega \mathbf{t}, \mathbf{u}^{\prime}(\mathbf{t})=\mathbf{u}_{\max } \omega \cos \omega \mathbf{t}, \mathbf{u}^{\prime}(\mathbf{t})=-\mathbf{u}_{\max } \omega^{2} \sin \omega \mathbf{t}
$$

Therefore, the following (approximate) relations between response spectra are often implemented:

$$
\mathrm{S}_{\mathrm{v}} \approx \omega_{0} * \mathrm{~S}_{\mathrm{d}}=P \mathrm{~S}_{\mathrm{v}}, \quad \mathrm{~S}_{\mathrm{a}} \approx \omega_{0}^{2 *} \mathrm{~S}_{\mathrm{d}}=P S_{\mathrm{a}}
$$

where, $\mathbf{P} \mathbf{S}_{\mathrm{v}}=$ pseudo-spectral velocity and $\mathrm{PS}_{\mathrm{a}}=$ pseudospectral acceleration

These approximate relations enable us to present all 3 response spectra with one tri-partite logarithmic plot.

Figure 2.29 Triple spectrum for the Kalamata, Greece 1986 earthquake: velocity (cm / sec) along vertical axis; acceleration (g) along left to right axis; relative displacement (cm) along right to left axis; all versus frequency (Hz). Note: the five curves are for $0 \%, 2 \%, 5 \%, 10 \%$ and 20% damping.

Design parameters of response spectra

Static equivalence approach

$$
\begin{aligned}
& \mathbf{V}_{\mathrm{b}}=\mathbf{f}_{\mathrm{s}}=\mathbf{k}^{*} \mathrm{~S}_{\mathrm{d}} \\
& \mathbf{M}_{\mathrm{b}}=\mathbf{h}^{*} \mathbf{V}_{\mathrm{b}}
\end{aligned}
$$

Column moment: $\mathbf{M}_{\mathbf{c}}=\frac{v E I}{\mathrm{~h}^{2}} * \mathbf{S}_{\mathrm{d}}=\frac{\mathrm{vEI}}{\mathrm{h}^{2}} * \frac{\mathrm{PS}_{\mathrm{a}}}{\omega_{\mathrm{o}}^{2}}$
where, $v=3$ for hinged-end, $v=6$ for fixed-end columns.

Spectral 'static equivalence' approach (exact - !) is not a fully static analysis approach (false - X).

(a) Problem description

Column cross-section: $0.4 \times 0.4 \mathrm{~m}$
Column stiffness computation:

$$
\begin{aligned}
& Q=12 E I / h^{3} \\
& k=4 Q=48 E I / h^{3}=16,600 \mathrm{kN} / \mathrm{m}
\end{aligned}
$$

Mass computation:

$$
M=(p l b) / g=36.7 \mathrm{kN} \mathrm{sec}^{2} / \mathrm{m}
$$

Damping coefficient:

$$
\zeta=c / c_{c r}=10 \%=0.1
$$

(b) SDOF system model

$$
\begin{aligned}
& \omega=\sqrt{\frac{k}{M}}=\sqrt{\frac{16,600}{36.7}}=21.3 \mathrm{rad} / \mathrm{sec} \\
& T=2 \pi / \omega=0.30 \mathrm{sec}, \quad f=1 / T=3.38 \mathrm{~Hz}
\end{aligned}
$$

(c) Response spectrum computations

From the triple Kalamata 1986 earthquake response spectrum given in Figure 2.29, we have:
maximum relative displacement is $u=y-y_{s}=1.8 \mathrm{~cm}$;
maximum velocity is $y=35 \mathrm{~cm} / \mathrm{sec}$;
maximum acceleration is $\ddot{y}=0.7 \mathrm{~g}=6.87 \mathrm{~m} / \mathrm{sec}^{2}$;
maximum column shear is $V=(k u) / 4=16,600(0.018) / 4=74.7 \mathrm{kN}$; and maximum column shear stress is $\tau=V / A=74.7 /\left(0.4^{2}\right)=467 \mathrm{kN} / \mathrm{m}^{2}$

Two degree of freedom (2-dof) system

Rigid beams
Massless columns
Zero damping

Two storey shear-frame

Dynamic equilibrium

$\mathrm{f}_{\mathrm{Ij}}=$ inertia force $\mathrm{j}=\mathrm{m}_{\mathrm{j}} * \ddot{\mathrm{u}}_{\mathrm{j}}$
$f_{\mathrm{Sj}}=\mathrm{f}_{\mathrm{Sja}}+\mathrm{f}_{\mathrm{Sjb}}=\mathrm{k}_{\mathrm{j}}{ }^{*}\left(\mathbf{u}_{\mathrm{j}}-\mathbf{u}_{\mathrm{i}}\right)=$ restoring force due to columns connecting levels $\mathrm{j}-1$ and j .

$$
\begin{aligned}
& \mathrm{f}_{\mathbf{1 2}}+\mathrm{f}_{\mathrm{S} 21}=\mathrm{f}_{\mathbf{2}}(\mathrm{t}) \rightarrow \mathrm{m}_{\mathbf{2}} \ddot{\mathrm{u}}_{2}+\mathrm{k}_{\mathbf{2}}\left(\mathrm{u}_{2}-\mathrm{u}_{1}\right)=\mathrm{f}_{\mathbf{2}}(\mathrm{t}) \\
& \mathrm{f}_{\mathrm{I} 1}+\mathrm{f}_{\mathrm{S} 12}+\mathrm{f}_{\mathrm{S} 10}=\mathrm{f}_{1}(\mathrm{t}) \rightarrow \mathrm{m}_{1} \ddot{\mathrm{u}}_{1}+\mathrm{k}_{2}\left(\mathrm{u}_{1}-\mathrm{u}_{2}\right)+\mathrm{k}_{1} \mathrm{u}_{1}=\mathrm{f}_{1}(\mathrm{t})
\end{aligned}
$$

System of coupled differential equations

Matrix notation

$$
M \ddot{U}+K U=F(t)
$$

$$
\mathrm{U}=\mathrm{U}(\mathrm{t})=\text { displacement vector }=\left[\begin{array}{l}
\mathrm{u}_{1}(\mathrm{t}) \\
\mathrm{u}_{2}(\mathrm{t})
\end{array}\right]
$$

$$
\begin{aligned}
& \mathbf{M}=\text { mass matrix }=\left[\begin{array}{cc}
m_{1} & 0 \\
0 & m_{2}
\end{array}\right] \\
& \qquad \mathbf{K}=\text { stiffness matrix }=\left[\begin{array}{cc}
k_{1}+k_{2} & -k_{2} \\
-k_{2} & k_{2}
\end{array}\right] \\
& \mathbf{F}(\mathbf{t})=\text { force vector }=\left[\begin{array}{l}
f_{1}(t) \\
f_{2}(t)
\end{array}\right]
\end{aligned}
$$

Free vibration of undamped 2-dof system

$$
\begin{gathered}
\mathbf{M}^{*} \mathbf{U}^{\prime}+\mathbf{K}^{*} \mathrm{U}=\mathbf{0} \\
\mathbf{U}(\mathrm{t})=\left[\begin{array}{l}
\mathrm{u}_{1}(\mathrm{t}) \\
\mathrm{u}_{2}(\mathrm{t})
\end{array}\right]=\left[\begin{array}{l}
\varphi_{1} \cos (\omega \mathrm{t}-\theta) \\
\varphi_{2} \cos (\omega \mathrm{t}-\theta)
\end{array}\right]=\left[\begin{array}{l}
\varphi_{1} \\
\varphi_{2}
\end{array}\right] \cos (\omega \mathrm{t}-\boldsymbol{\theta})= \\
\Phi \cos (\omega \mathrm{t}-\theta) \\
\ddot{U}(\mathrm{t})=\left[\begin{array}{l}
\ddot{\mathrm{u}}_{1}(\mathrm{t}) \\
\ddot{\mathrm{u}}_{2}(\mathrm{t})
\end{array}\right]=\left[\begin{array}{l}
-\omega^{2} \varphi_{1} \cos (\omega \mathrm{t}-\theta) \\
-\omega^{2} \varphi_{2} \cos (\omega \mathrm{t}-\theta)
\end{array}\right]=-\omega_{2} \Phi \cos (\omega \mathrm{t}-\theta)
\end{gathered}
$$

$\mathrm{M}\left[-\omega^{\mathbf{2}} \boldsymbol{\Phi} \cos (\omega \mathrm{t}-\theta)\right]+\mathrm{K}[\Phi \cos (\omega \mathrm{t}-\boldsymbol{\theta})]=[0] \rightarrow$ $\left\{\mathrm{K}-\boldsymbol{\omega}^{\mathbf{2}} \mathrm{M}\right\} \boldsymbol{\Phi} \cos (\omega \mathrm{t}-\boldsymbol{\theta})=[0]$

Unknowns are the amplitude vector Φ and the frequency of free oscillation ω.

$$
\left\{\mathrm{K}-\omega^{2} \mathrm{M}\right\} \Phi \cos (\omega \mathrm{t}-\theta)=[0]
$$

Should be valid for any time instant \rightarrow zero determinant

$$
\begin{aligned}
\left|\mathrm{K}-\omega^{2} \mathrm{M}\right|=[0] \rightarrow\left|\begin{array}{cc}
\mathrm{k}_{1}+\mathrm{k}_{2}-\omega^{2} \mathrm{~m}_{1} & -\mathrm{k}_{2} \\
-\mathrm{k}_{2} & \mathrm{k}_{2}-\omega^{2} \mathrm{~m}_{2}
\end{array}\right|=[0] \rightarrow \\
\boldsymbol{\omega}^{4}\left(\mathbf{m}_{\mathbf{1}} \mathbf{m}_{\mathbf{2}}\right)-\boldsymbol{\omega}^{\mathbf{2}\left\{\left(\mathbf{k}_{\mathbf{1}}+\mathrm{k}_{\mathbf{2}}\right) \mathbf{m}_{\mathbf{2}}+\mathbf{k}_{\mathbf{2}} \mathbf{m}_{1}\right\}+\mathbf{k}_{\mathbf{1}} \mathbf{k}_{\mathbf{2}}}=\mathbf{0}
\end{aligned}
$$

This is the frequency equation. Setting $\omega^{2}=\lambda$, we get two solutions for λ and hence, two frequency values for free vibration $\lambda_{1}=\omega_{1}{ }^{2}$ and $\lambda_{2}=\omega_{2}{ }^{2}$.

Therefore, a 2-dof system exhibits 2 natural frequencies, ω_{1} and ω_{2}.

Substituting ω_{1} and ω_{2} back into the matrix equation, the two corresponding amplitude vectors (eigenvectors) can be evaluated.

$$
\left\{\mathrm{K}-\omega_{\mathrm{j}}{ }^{2} \mathrm{M}\right\} \Phi_{\mathrm{j}} \cos \left(\omega_{\mathrm{j}}^{\mathrm{t}-\theta)}=[0] \rightarrow\left\{\mathrm{K}-\omega_{\mathrm{j}}^{2} \mathrm{M}\right\} \Phi_{\mathrm{j}}=[0]\right.
$$

The eigenvalue problem does not fix the absolute amplitude of the vectors Φ_{j}, but only the shape of the vector (relative values of displacement)

$2 m \mathrm{i}_{1}+2 \mathrm{ku}_{1}+\mathrm{k}\left(\mathrm{u}_{1}-\mathrm{u}_{2}\right)=0$ $M \ddot{U}+K U=0$

$$
m \ddot{i}_{2}+k\left(u_{2}-u_{1}\right)=0
$$

\rightarrow

олои $\mathrm{M}=\left[\begin{array}{cc}2 \mathrm{~m} & 0 \\ 0 & \mathrm{~m}\end{array}\right], \mathrm{K}=\left[\begin{array}{cc}3 k & -\mathrm{k} \\ -\mathrm{k} & \mathrm{k}\end{array}\right] \operatorname{\kappa ol} \mathrm{U}=\left[\begin{array}{l}\mathrm{u}_{1} \\ \mathrm{u}_{2}\end{array}\right]$

Natural frequencies determination
$\left|\mathrm{K}-\omega^{2} \mathrm{M}\right|=0 \rightarrow\left|\begin{array}{cc}3 \mathrm{k}-2 \omega^{2} \mathrm{~m} & -\mathrm{k} \\ -\mathrm{k} & \mathrm{k}-\omega^{2} \mathrm{~m}\end{array}\right|=0 \rightarrow$
$2 \omega^{4} m^{2}-5 \omega^{2} k m+2 k^{2}=0$

Roots of quadratic equation $\omega_{1}{ }^{2}=\mathrm{k} / 2 \mathrm{~m} \mathrm{k} \alpha \mathrm{l} \omega_{2}{ }^{2}=2 \mathrm{k} / \mathrm{m}$, with corresponding natural periods

$$
\mathrm{T}_{1}=2 \pi / \omega_{1}=\pi \sqrt{\frac{8 \mathrm{~m}}{\mathrm{k}}}, \quad \mathrm{~T}_{2}=2 \pi / \omega_{2}=\pi \sqrt{\frac{2 \mathrm{~m}}{\mathrm{k}}}
$$

Modal shapes calculation \rightarrow

Eigenvectors $\boldsymbol{\Phi}_{\mathbf{1}}=\left[\begin{array}{l}\varphi_{11} \\ \varphi_{21}\end{array}\right]$ and $\boldsymbol{\Phi}_{\mathbf{2}}=\left[\begin{array}{l}\varphi_{12} \\ \varphi_{22}\end{array}\right]$, are computed
$\omega_{1}{ }^{2}=k / 2 m \rightarrow\left[\begin{array}{cc}2 k & -k \\ -k & k / 2\end{array}\right]\left[\begin{array}{l}\varphi_{11} \\ \varphi_{21}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right] \rightarrow 2 \varphi_{11}=\varphi_{21}$
$\boldsymbol{\omega}_{2}{ }^{2}=\mathbf{2 k} / \mathrm{m} \rightarrow\left[\begin{array}{ll}-\mathrm{k} & -\mathrm{k} \\ -\mathrm{k} & -\mathrm{k}\end{array}\right]\left[\begin{array}{l}\varphi_{12} \\ \varphi_{22}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right] \rightarrow \varphi_{12}=-\varphi_{22}$

Setting (arbitrarily) $\varphi_{21}=\varphi_{22}=1.0$, we get:

$$
\boldsymbol{\Phi}_{1}=\left[\begin{array}{l}
0.5 \\
1.0
\end{array}\right], \quad \boldsymbol{\Phi}_{2}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right], \quad \operatorname{k\alpha l} \boldsymbol{\Phi}=\left[\begin{array}{cc}
0.5 & -1 \\
1 & 1
\end{array}\right]
$$

Orthogonality of modes

Eigenvectors are orthogonal with respect to mass and stiffness matrices.

$$
\Phi_{\mathrm{j}}^{\mathrm{T}} \mathrm{M} \Phi_{\mathrm{k}}=0 \text { and } \Phi_{\mathrm{j}}^{\mathrm{T}} \mathrm{~K} \Phi_{\mathrm{k}}=0, \gamma \jmath \alpha \mathrm{j} \neq \mathrm{k}
$$

Modal analysis

Set

$$
\mathbf{U}(\mathbf{t})=\sum_{\mathrm{j}=1}^{2} \Phi_{\mathrm{j}} \mathrm{q}_{\mathrm{j}}(\mathrm{t})=\boldsymbol{\Phi} \mathbf{Q}(\mathbf{t})
$$

Substitute to the matrix equation of motion:
$\mathbf{M} \ddot{\mathrm{U}}+\mathbf{K} \mathbf{U}=[0] \rightarrow \mathbf{M} \Phi \ddot{\mathrm{Q}}(\mathrm{t})+\mathrm{K} \Phi \mathbf{Q}(\mathrm{t})=[0]$
Pre-multiply all terms with $\boldsymbol{\Phi}^{\mathbf{T}}$:
$\boldsymbol{\Phi}^{\mathbf{T}} \mathbf{M \Phi} \boldsymbol{\mathrm { Q }}(\mathrm{t})+\boldsymbol{\Phi}^{\mathbf{T}} \mathbf{K} \boldsymbol{\Phi} \mathbf{Q}(\mathrm{t})=[0] \rightarrow \mathbf{M}^{*} \ddot{\mathrm{Q}}(\mathrm{t})+\mathbf{K}^{*} \mathbf{Q}(\mathrm{t})=[0]$

The transformed matrix equation of free vibration, reads:

$$
\mathbf{M}^{*} \ddot{\mathrm{Q}}(\mathrm{t})+\mathrm{K}^{*} \mathbf{Q}(\mathrm{t})=[0]
$$

Due to orthogonality property the new matrices M^{*} and K* are diagonal.
$\mathbf{M}^{*}=$ generalized mass matrix $=\left[\begin{array}{cc}\mathrm{m}_{1}^{*} & 0 \\ 0 & \mathrm{~m}_{2}^{*}\end{array}\right]$

$$
\mathbf{K}^{*}=\text { generalized stiffness matrix }=\left[\begin{array}{cc}
\mathrm{k}_{1}^{*} & 0 \\
0 & \mathrm{k}_{2}^{*}
\end{array}\right]
$$

Therefore, the original matrix equation is transformed into a set of uncoupled sdof free vibration equations of the form (for $\mathbf{j}=1,2$):

$$
\mathrm{m}_{\mathrm{j}}^{*} \ddot{\mathrm{q}}_{\mathrm{j}}(\mathrm{t})+\mathrm{k}_{\mathrm{j}}^{*} \mathbf{q}_{\mathrm{j}}(\mathrm{t})=\mathbf{0} \rightarrow \ddot{\mathrm{q}}_{\mathrm{j}}(\mathrm{t})+\omega_{\mathrm{j}}^{2} \mathbf{q}_{\mathrm{j}}(\mathrm{t})=\mathbf{0}
$$

Modal decoupling

$$
\begin{gathered}
u_{2}(t)=u_{21}(t)+u_{22}(t)= \\
\varphi_{21} q_{1}(t)+\varphi_{22} q_{2}(t)
\end{gathered}
$$

Forced vibration of a damped multi degree of freedom (mdof) system

Original (coupled) equation of motion:

$$
\mathbf{M} \ddot{U}+\mathbf{C} \dot{U}+\mathbf{K} \mathbf{U}=\mathbf{F}(\mathbf{t})
$$

Modal (decoupled) equation of motion:

$$
\begin{aligned}
& \Phi^{\mathrm{T}} \mathrm{M} \Phi \ddot{\mathrm{Q}}+\Phi^{\mathrm{T}} \mathbf{C \Phi} \dot{\mathrm{Q}}+\Phi^{\mathrm{T}} \mathrm{~K} \Phi \mathrm{Q}=\Phi^{\mathrm{T}} \mathrm{~F}(\mathbf{t}) \rightarrow \\
& \mathrm{M}^{*} \ddot{\mathrm{Q}}+\mathbf{C}^{*} \dot{\mathrm{Q}}+\mathrm{K}^{*} \mathbf{Q}=\mathrm{F}^{*}(\mathbf{t})
\end{aligned}
$$

where, $\mathrm{C}^{*}=$ generalized damping matrix and $\mathrm{F}^{*}=$ generalized force vector.

To ensure diagonalization of C*, here the assumption is made that the damping matrix of the original system C can be expressed as

$$
\mathrm{C}=\alpha \cdot \mathrm{M}+\beta \cdot \mathrm{K}
$$

Typical generalized (sdof) equation of motion:
$m_{j}^{*} \ddot{\mathrm{q}}_{\mathrm{j}}+\mathrm{c}_{\mathrm{j}}^{*} \dot{\mathrm{q}}_{\mathrm{j}}+\mathrm{k}_{\mathrm{j}}^{*} \mathbf{q}_{\mathrm{j}}=\mathrm{f}_{\mathrm{j}}^{*}(\mathrm{t}) \rightarrow \ddot{\mathrm{q}}_{\mathrm{j}}+2 \xi_{j} \omega_{\mathrm{j}} \dot{\mathrm{q}}_{\mathrm{j}}+\omega_{\mathrm{j}}^{2} \mathbf{q}_{\mathrm{j}}=\frac{\mathrm{f}_{\mathrm{j}}^{*}(\mathrm{t})}{\mathrm{m}_{\mathrm{j}}^{*}}=\tilde{f}_{\mathrm{j}}(\mathrm{t})$
To be solved within the framework of sdof theory (1 ${ }^{\text {st }}$ part of presentation).

Following the determination of generalized vector \mathbf{Q}, the original response vector U is computed as

$$
\mathbf{U}(\mathbf{t})=\boldsymbol{\Phi} \mathbf{Q}(\mathbf{t})=\sum_{\mathrm{j}=1}^{v} \Phi_{\mathrm{j}} \mathrm{q}_{\mathrm{j}}(\mathrm{t})
$$

The contribution of first modes are much more important than the contribution of higher modes.

Earthquake excitation of mdof systems (Response spectrum analysis)

v-storey	shear
plane frame	under
ground	motion
$\mathbf{u g}_{\mathrm{g}}(\mathrm{t})$	

The total displacement vector $\mathrm{U}_{\mathrm{t}}(\mathrm{t})$, is composed by the relative displacement vector $\mathrm{U}(\mathrm{t})$ and the ground motion.

$$
\mathrm{U}_{\mathrm{t}}(\mathrm{t})=\mathrm{U}(\mathrm{t})+[1] \mathbf{u}_{\mathrm{g}}(\mathrm{t})
$$

The matrix equation of motion of the original system is:

$$
\mathbf{M} \ddot{U}+\mathbf{C} \dot{U}+K U=-M[1] \mathbf{a}_{\mathbf{g}}(\mathbf{t})=\mathrm{F}_{\mathrm{g}}(\mathbf{t})
$$

Firstly we compute ω_{j} к $\alpha \boldsymbol{} \Phi_{\mathrm{j}}$, and then we proceed to the modal transformation

$$
\begin{aligned}
& \Phi^{\mathrm{T}} \mathbf{M \Phi} \ddot{\mathrm{Q}}+\Phi^{\mathrm{T}} \mathbf{C \Phi} \dot{\mathrm{Q}}+\Phi^{\mathrm{T}} \mathrm{~K} \Phi \mathbf{Q}=\Phi^{\mathrm{T}} \mathbf{F}_{\mathrm{g}}(\mathbf{t}) \rightarrow \\
& \mathbf{M}^{*} \ddot{\mathrm{Q}}+\mathbf{C}^{*} \dot{\mathrm{Q}}+\mathbf{K}^{*} \mathbf{Q}=\mathbf{F}^{*}(\mathbf{t})
\end{aligned}
$$

Here, the generalized force vector is

$$
F^{*}(t)=\Phi^{T} F_{g}(t)=-\Phi^{T} M[1] a_{g}(t)
$$

The sdof generalized equations are

$$
\ddot{\mathrm{q}}_{\mathrm{j}}+2 \xi_{j} \omega_{\mathrm{i}} \dot{\mathrm{q}}_{\mathrm{j}}+\omega_{\mathrm{j}}^{2} \mathrm{q}_{\mathrm{j}}=\frac{\mathrm{f}_{\mathrm{j}}^{*}(\mathrm{t})}{\mathrm{m}_{\mathrm{j}}^{*}}=-\mathbf{a}_{\mathbf{g}}(\mathrm{t}) \frac{\sum_{\mathrm{k}=1}^{v} m_{\mathrm{k}} \varphi_{\mathrm{kj}}}{\sum_{\mathrm{k}=1}^{v} m_{k} \varphi_{\mathrm{kj}}^{2}}=-\Gamma_{\mathrm{j}} \mathbf{a}_{\mathbf{g}}(\mathbf{t})
$$

The generalized force parameter Γ_{j} is known as modal participation factor.

If the seismic action is expressed via the standard response or design spectra, the corresponding spectral values of the generalized response q_{j}, are

$$
S_{d, j}=\Gamma_{j} S_{d}\left(T_{j}, \xi_{j}\right), \quad S_{v, j}=\Gamma_{j} S_{v}\left(T_{j}, \xi_{j}\right), \quad S_{a, j}=\Gamma_{j} S_{a}\left(T_{j}, \xi_{j}\right)
$$

Example of utilization of Greek Design spectrum (EAK) for the estimation of modal spectral accelerations of a mdof frame

The ordinates of the design spectrum should be multiplied by
the
corresponding modal participation factors Γ_{j}.

$\mathrm{T}_{3}=0.11 \mathrm{sec}$

$\mathrm{T}_{2}=0.18 \mathrm{sec}$

$\mathrm{T}_{1}=0.53 \mathrm{sec}$

The problem of combination of modal peak values
The following decomposition of physical response \mathbf{u}_{j} in terms of generalized (modal) components \mathbf{q}_{k} is valid for any instant of time.

$$
\mathrm{u}_{\mathrm{j}}(\mathrm{t})=\sum_{\mathrm{k}=1}^{v} \varphi_{\mathrm{jk}} \mathrm{q}_{\mathrm{k}}(\mathrm{t})=\sum_{\mathrm{k}=1}^{v} \mathrm{u}_{\mathrm{jk}}(\mathrm{t})
$$

where $u_{j k}(t)$ is the 'contribution' of k modal component $q_{k}(t)$ to the response of the j degree of freedom $u_{j}(t)$ of the original system.

However, if only spectral (peak) modal response quantities are available

$$
\bar{u}_{j k}=\varphi_{j, k} \Gamma_{k} S_{d}\left(T_{k}, \xi_{k}\right)
$$

these do not occur at the same time and hence, cannot be added to obtain the peak value of $u_{j}(t)$

Modal contributions $\mathbf{u}_{\mathbf{3 k}}(\mathrm{t})($ for $\mathrm{k}=\mathbf{1 , 2 , 3})$ to the response of the top floor of a 3storey frame
$\left(\bar{u}_{31}+\bar{u}_{32}+\bar{u}_{33}\right)=$ $(4.91+1.56+0.10)=$ $6.57>5.16$

Modal combination rule SRSS

Design Technology Challenge

THE END

